题目内容
【题目】已知函数,为常数.
(1)讨论函数的单调区间;
(2)若恒成立,求实数的取值范围.
【答案】(1) 当时,单调递增区间为,无单调递减区间;
当时,单调递减区间为,单调递增区间为;(2).
【解析】
(1)对求导,然后分和进行分类讨论,根据的正负,得到的单调区间;(2)由(1)得到,且在处取最小值,从而得到,设,利用导数得到的最大值为,从而得到满足要求的的值.
(1)由题意,
,
当时,,函数在区间上单调递增,
当时,当上,单调递减,
当上,单调递增,
综上所述,当时,单调递增区间为,无单调递减区间;
当时,单调递减区间为,单调递增区间为.
(2)由(1)可知
当时,函数在区间上单调递增,
又,与题设矛盾,
当时,
在区间上函数单调递减,区间上函数单调递增,
所以函数即可,
设,,
,
所以当上,单调递增,
当上,单调递减,
所以时,取极大值,也是最大值,
所以,
所以满足不等式的的值只有,
所以时,恒成立.
【题目】某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:
每月完成合格产品的件数(单位:百件) | |||||
频数 | 10 | 45 | 35 | 6 | 4 |
男员工人数 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?
非“生产能手” | “生产能手” | 合计 | |
男员工 | |||
span>女员工 | |||
合计 |
(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.
附:,
.