题目内容
已知等差数列{an}前三项之和为-3,前三项积为8.
(1)求等差数列{an}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(1)求等差数列{an}的通项公式;
(2)若a2,a3,a1成等比数列,求数列{|an|}的前n项和.
(1)an=-3n+5或an=3n-7.(2)Sn=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240411141451296.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240411141451296.png)
(1)设公差为d,则
解得![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240411141921159.png)
∴an=-3n+5或an=3n-7.
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2不成等比数列;
当an=3n-7时,a2,a3,a1分别为-1,2,-4成等比数列,满足条件.
当|an|=|3n-7|=
n=1,S1=4;n=2时,S2=5;
当n≥3时,Sn=|a1|+…+|an|=
n+10.又n=2满足此式,
∴Sn=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240411141451296.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240411141611289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240411141921159.png)
∴an=-3n+5或an=3n-7.
(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2不成等比数列;
当an=3n-7时,a2,a3,a1分别为-1,2,-4成等比数列,满足条件.
当|an|=|3n-7|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240411142071036.png)
当n≥3时,Sn=|a1|+…+|an|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041114223651.png)
∴Sn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240411141451296.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目