题目内容
【题目】已知函数.
(1)当时,求的单调区间.
(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.
(3)已知分别在,处取得极值,求证:.
【答案】(1)单调递增区间为,;单调递减区间为;(2),;(3)证明见解析.
【解析】
(1)由的正负可确定的单调区间;
(2)利用基本不等式可求得时,取得最小值,由导数的几何意义可知,从而求得,求得切点坐标后,可得到切线方程;
(3)由极值点的定义可知是的两个不等正根,由判别式大于零得到的取值范围,同时得到韦达定理的形式;化简为,结合的范围可证得结论.
(1)由题意得:的定义域为,
当时,,
,
当和时,;当时,,
的单调递增区间为,;单调递减区间为.
(2),所以(当且仅当,即时取等号),
切线的斜率存在最小值,,解得:,
,即切点为,
从而切线方程,即:.
(3),
分别在,处取得极值,
,是方程,即的两个不等正根.
则,解得:,且,.
,
,,
即不等式成立.
练习册系列答案
相关题目