题目内容
【题目】已知抛物线上一点到其焦点下的距离为10.
(1)求抛物线C的方程;
(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由抛物线的定义,可得到,即可求出,从而得到抛物线的方程;(Ⅱ)直线的斜率一定存在,可设斜率为,直线为,设,,由可得,,,然后对求导,可得到的斜率及方程表达式,进而可表示出,同理可得到的表达式,然后对化简可求出范围。
解:(Ⅰ)已知到焦点的距离为10,则点到准线的距离为10.
∵抛物线的准线为,∴,
解得,∴抛物线的方程为.
(Ⅱ)由已知可判断直线的斜率存在,设斜率为,因为,则:.
设,,由消去得,,
∴,.
由于抛物线也是函数的图象,且,则:.
令,解得,∴,从而.
同理可得,,
∴ .
∵,∴的取值范围为.
练习册系列答案
相关题目
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)