题目内容
【题目】将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D﹣ABC中,给出下列三个命题:
①△DBC是等边三角形;
②AC⊥BD;
③三棱锥D﹣ABC的体积是 .
其中正确命题的序号是(写出所有正确命题的序号)
【答案】①②
【解析】解:如图所示:BD=
又BC=DC=1
∴面DBC是等边三角形①正确.
∵AC⊥DO,AC⊥BO
∴AC⊥平面DOB
∴AC⊥BD
②正确.
三棱锥D﹣ABC的体积=
③不正确.
所以答案是:①②
【考点精析】关于本题考查的棱锥的结构特征和平面的基本性质及推论,需要了解侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方;如果一条直线上的两点在一个平面内,那么这条直线在此平面内;过不在一条直线上的三点,有且只有一个平面;如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线才能得出正确答案.
练习册系列答案
相关题目