题目内容
(本小题满分12分)
如图:梯形
和正![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136538196.png)
所在平面互相垂直,其中
,且
为
中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201366784152.png)
(Ⅰ) 求证:
平面
;
(Ⅱ)若
,求二面角
的余弦值;
如图:梯形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136522534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136538196.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136553437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136585614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136616814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136631292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136647396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232201366784152.png)
(Ⅰ) 求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136709465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136725424.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136741672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136772537.png)
(1)见解析;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136787385.png)
要求证
平面
,只需证明
平面
内的一直线,在说明BC不在面
内,本题中,
通过证明
为平行四边形,得出
进而的证; 由
,取AD中点E,
再证
,故
是二面角
的平面角,转化为三角形内求解。
证明: (Ⅰ)因为
为
中点,
所以
………1分
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137131611.png)
,
所以有
…………………2分
所以
为平行四边形,所以
………3分
又
平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137255452.png)
平面![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137255452.png)
所以
平面
. ………5分
(Ⅱ)取AD的中点E,连接OE、PE,设
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137380546.png)
又
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137427418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137505723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
是二面角
的平面角 9分
在
中,
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137677657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137723923.png)
11分
二面角
的余弦值为
。 12分
(其它解法酌情给分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136709465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136725424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136709465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136725424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136725424.png)
通过证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136912505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136943601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136959495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136975594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136990582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137021507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136772537.png)
证明: (Ⅰ)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136631292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136647396.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137099683.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137131611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137146708.png)
所以有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137177728.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136912505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136943601.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137240419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137255452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137287480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137255452.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137333471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136725424.png)
(Ⅱ)取AD的中点E,连接OE、PE,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137365484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137380546.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136741672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137427418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136959495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137505723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137021507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136772537.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137599623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137614651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137645889.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137677657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137723923.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137739403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220137411195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136772537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220136787385.png)
(其它解法酌情给分)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目