题目内容
过抛物线= 2px(p>0)的焦点F作一条直线l交抛物线于A、B两点,以AB为直径的圆和该抛物线的准线l的位置关系是( )
A.相交 B.相离 C.相切 D.不能确定
A.相交 B.相离 C.相切 D.不能确定
C
专题:综合题.
分析:设P为AB中点,A、B、P在准线l上射影分别为M、N、Q,根据抛物线的定义,可知AP+BP=AM+BN,从而 PQ= AB,所以以AB为直径作圆则此圆与准线l相切.
解答:解:设AB为过抛物线焦点F的弦,P为AB中点,A、B、P在准线l上射影分别为M、N、Q,
∵AP+BP=AM+BN
∴PQ=AB,
∴以AB为直径作圆则此圆与准线l相切
故选C.
点评:本题以抛物线为载体,考查抛物线过焦点弦的性质,关键是正确运用抛物线的定义,合理转化,综合性强.
练习册系列答案
相关题目