题目内容
【题目】以表示值域为的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间。例如,当,时,,。则下列命题中正确的是:( )
A.设函数的定义域为,则“”的充要条件是“,,”
B.函数的充要条件是有最大值和最小值
C.若函数,的定义域相同,且,,则
D.若函数有最大值,则
【答案】ACD
【解析】
A选项中,根据函数的定义域、值域的定义,转化成用简易逻辑语言表示出来;
B选项中举反例保证函数的值域为集合的子集,但值域是一个开区间,从而说明函数没有最值;C选项中从并集的角度认识函数值域,可以发现,从而发现命题正确;D选项中从极限的角度证明,均不成立,所以,再求出函数的值域为,从而得到命题D正确.
对A,“”即函数值域为,“,,”表示的是函数可以在中任意取值,故有:设函数的定义域为,则“”的充要条件是“,,”,命题A是真命题;
对B,若函数,即存在一个正数,使得函数的值域包含于区间.
.例如:函数满足,则有,此时,无最大值,无最小值.命题B“若函数,则有最大值和最小值.”是假命题;
对C,若函数,的定义域相同,且,,则值域为,,并且存在一个正数,使得,,则.命题C是真命题.
对D,函数有最大值,假设,当时,,,,则,与题意不符; 假设,当时,,,,则,与题意不符.,即函数,当时,,,即;当时,;当时,,,即.
,即,故命题D是真命题.
故选:ACD.
【题目】某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本(单位:元/)与上市时间(单位:10天)的数据如下表:
时间 | 5 | 11 | 25 |
种植成本 | 15 | 10.8 | 15 |
(1)根据上表数据,从下列函数:,,,中(其中),选取一个合适的函数模型描述该蔬菜种植成本与上市时间的变化关系;
(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.