题目内容
【题目】已知函数.
(1)设,试讨论单调性;
(2)设,当时,任意,存在,使,求实数的取值范围.
【答案】(1)当时,在上是增函数,在和上是减函数;当时,在上是减函数;当时,在上是增函数,在和上是减函数;(2).
【解析】
试题(1)先求出的导数,,然后在的范围内讨论的大小以确定和的解集;(2)时,代入结合上问可知函数在在上是减函数,在上是增函数,即在取最小值,若,存在,使,即存在使得.从而得出实数的取值范围.注意不能用基本不等式,因为等号取不到,实际上为减函数.所以其值域为,从而,即有.
试题解析:(1)函数的定义域为,
因为,所以,
令,可得,,2分
①当时,由可得,故此时函数在上是增函数.
同样可得在和上是减函数. 4分
②当时,恒成立,故此时函数在上是减函数. 6分
③当时,由可得,故此时函数在上是增函数,
在和上是减函数; 8分
(2)当时,由(1)可知在上是减函数,在上是增函数,
所以对任意的,有,
由条件存在,使,所以, 12分
即存在,使得,
即在时有解,
亦即在时有解,
由于为减函数,故其值域为,
从而,即有,所以实数的取值范围是. 16分
【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的平均值和方差.
附: ,其中.
0.05 | 0.01 | |
3.841 | 6.635 |