题目内容
【题目】抛物线的焦点为,准线为,是抛物线上的两个动点,且满足.设线段的中点在上的投影为,则的最大值是 ( )
A. B. C. D.
【答案】B
【解析】
设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣3ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.
设|AF|=a,|BF|=b,连接AF、BF,
由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,
在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab,
配方得,|AB|2=(a+b)2﹣3ab,
又∵ab,
∴(a+b)2﹣3ab≥(a+b)2(a+b)2(a+b)2
得到|AB|(a+b).
∴1,
即的最大值为1.
故选:B.
【题目】2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:
(Ⅰ)估计该组数据的中位数、众数;
(Ⅱ)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94);
(Ⅲ)在(Ⅱ)的条件下,有关部门为此次参加问卷调査的市民制定如下奖励方案:
(i)得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
(ii)每次赠送的随机话费和对应概率如下:
赠送话费(单元:元) | 10 | 20 |
概率 |
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加.问卷调查获赠的话费,求X的分布列和数学期望.
附: ,
若ZN(μ,σ2),则P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.