题目内容

已知分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得分别是的外接圆和内切圆.
证:如图,设分别是的外接圆和内切圆半径,延长,则,延长;则,即

分别作的切线上,连,则平分,只要证,也与相切;
,则的中点,连,则


所以,由于在角的平分线上,因此点的内心,(这是由于,,而
,所以,点的内心).即弦相切.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网