题目内容
(10分)如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED。
(1)证明:CD//AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆。
(1)EC=ED,∠EDC=∠ECD,A,B,C,D四点共圆,∠EDC=∠EBA,CD∥AB
(2)AE=BE,EF=EG,故∠EFD=∠EGC,∠FED=∠GEC,△EFA≌△EGB,故∠FAE=∠GBE,CD∥AB,∠FAB=∠GBA,所以∠AFG+∠GBA=180°故A,B.G,F四点共圆
解析试题分析:(I)因为EC=ED,
所以∠EDC=∠ECD
因为A,B,C,D四点在同一圆上,
所以∠EDC=∠EBA
故∠ECD=∠EBA,
所以CD∥AB
(Ⅱ)由(I)知,AE=BE,
因为EF=EG,故∠EFD=∠EGC
从而∠FED=∠GEC
连接AF,BG,△EFA≌△EGB,故∠FAE=∠GBE
又CD∥AB,∠FAB=∠GBA,
所以∠AFG+∠GBA=180°
故A,B.G,F四点共圆
考点:平面几何证明
点评:四点共圆则四边形对角互补
练习册系列答案
相关题目
已知直线的参数方程为(为参数),则直线的普通方程为( )
A. | B. | C. | D. |