ÌâÄ¿ÄÚÈÝ
£¨2012•Í¨ÖÝÇøһģ£©¶ÔÓÚÊýÁÐ{an}£¬´ÓµÚ¶þÏîÆð£¬Ã¿Ò»ÏîÓëËüÇ°Ò»ÏîµÄ²îÒÀ´Î×é³ÉµÈ±ÈÊýÁУ¬³Æ¸ÃµÈ±ÈÊýÁÐΪÊýÁÐ{an}µÄ¡°²îµÈ±ÈÊýÁС±£¬¼ÇΪÊýÁÐ{bn}£®ÉèÊýÁÐ{bn}µÄÊ×Ïîb1=2£¬¹«±ÈΪq£¨qΪ³£Êý£©£®
£¨I£©Èôq=2£¬Ð´³öÒ»¸öÊýÁÐ{an}µÄÇ°4Ï
£¨II£©£¨¢¡£©ÅжÏÊýÁÐ{an}ÊÇ·ñΪµÈ²îÊýÁУ¬²¢ËµÃ÷ÄãµÄÀíÓÉ£»
£¨¢¢£©a1ÓëqÂú×ãʲôÌõ¼þ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨III£©Èôa1=1£¬1£¼q£¼2£¬ÊýÁÐ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¨n¡ÊN*£©£¬ÇÒc1=q£¬ÇóʹµÃcn£¼0³ÉÁ¢µÄnµÄÈ¡Öµ·¶Î§£®
£¨I£©Èôq=2£¬Ð´³öÒ»¸öÊýÁÐ{an}µÄÇ°4Ï
£¨II£©£¨¢¡£©ÅжÏÊýÁÐ{an}ÊÇ·ñΪµÈ²îÊýÁУ¬²¢ËµÃ÷ÄãµÄÀíÓÉ£»
£¨¢¢£©a1ÓëqÂú×ãʲôÌõ¼þ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨III£©Èôa1=1£¬1£¼q£¼2£¬ÊýÁÐ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¨n¡ÊN*£©£¬ÇÒc1=q£¬ÇóʹµÃcn£¼0³ÉÁ¢µÄnµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨¢ñ£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬ÇÒb1=2£¬q=2£¬ËùÒÔb2=4£¬b3=8£¬ÓÉ´ËÄܹ»Çó³öÒ»¸öÊýÁÐ{an}µÄÇ°4Ï
£¨¢ò£©£¨¢¡£©ÒòΪb1=2£¬ËùÒÔan-a1=2(1+q+q2+¡+qn-2)£®q=1ʱ£¬ÊýÁÐ{an}ÊǵȲîÊýÁУ®Èôq¡Ù1ʱ£¬ÊýÁÐ{an}²»ÊǵȲîÊýÁУ®
£¨¢¢£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×Ïîb1=2£¬¹«±ÈΪq£¬ËùÒÔb2=2q£¬b3=2q2£®ËùÒÔa2=a1+2£¬a3=a1+2+2q£®ÒòΪÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ËùÒÔa22=a1•a3£¬ËùÒÔµ±q=
ʱ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ®
£¨¢ó£©ÒòΪ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¬ËùÒÔ£¨an+cn£©-£¨an-1+cn-1£©=q£¬Óɴ˲ÂÏ룺µ±n¡Ý3ʱ£¬cn£¼0£®ÔÙÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
£¨¢ò£©£¨¢¡£©ÒòΪb1=2£¬ËùÒÔan-a1=2(1+q+q2+¡+qn-2)£®q=1ʱ£¬ÊýÁÐ{an}ÊǵȲîÊýÁУ®Èôq¡Ù1ʱ£¬ÊýÁÐ{an}²»ÊǵȲîÊýÁУ®
£¨¢¢£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×Ïîb1=2£¬¹«±ÈΪq£¬ËùÒÔb2=2q£¬b3=2q2£®ËùÒÔa2=a1+2£¬a3=a1+2+2q£®ÒòΪÊýÁÐ{an}ÊǵȱÈÊýÁУ¬ËùÒÔa22=a1•a3£¬ËùÒÔµ±q=
a1+2 |
a1 |
£¨¢ó£©ÒòΪ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¬ËùÒÔ£¨an+cn£©-£¨an-1+cn-1£©=q£¬Óɴ˲ÂÏ룺µ±n¡Ý3ʱ£¬cn£¼0£®ÔÙÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬ÇÒb1=2£¬q=2£¬
ËùÒÔb2=4£¬b3=8£¬
ËùÒÔa1=1£¬a2=3£¬a3=7£¬a4=15£®£¨Ð´³öÂú×ãÌõ¼þµÄÒ»×é¼´¿É£©
¡£¨2·Ö£©
£¨¢ò£©£¨¢¡£©ÒòΪb1=2£¬
ËùÒÔa2-a1=2£¬a3-a2=2q£¬a4-a3=2q2£¬¡£¬an-an-1=2qn-2£¬n¡Ý2£®
ËùÒÔan-a1=2(1+q+q2+¡+qn-2)£®
¢ÙÈôq=1£¬ËùÒÔan-an-1=2£¬
ËùÒÔÊýÁÐ{an}ÊǵȲîÊýÁУ®¡£¨3·Ö£©
¢ÚÈôq¡Ù1£¬ËùÒÔan=
+a1£¬
ËùÒÔan+1-an=
-
=
=2qn-1£®
ÒòΪq¡Ù1£¬ËùÒÔ2qn-1²»Êdz£Êý£®
ËùÒÔÊýÁÐ{an}²»ÊǵȲîÊýÁУ®¡£¨5·Ö£©
£¨¢¢£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×Ïîb1=2£¬¹«±ÈΪq£¬
ËùÒÔb2=2q£¬b3=2q2£®ËùÒÔa2=a1+2£¬a3=a1+2+2q£®
ÒòΪÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
ËùÒÔa22=a1•a3£¬
¼´£¨a1+2£©2=a1•£¨a1+2+2q£©£¬
ËùÒÔq=
£®
ËùÒÔµ±q=
ʱ£¬ÊýÁÐ{an}ÊǵȱÈÊýÁУ®¡£¨7·Ö£©
£¨¢ó£©ÒòΪ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¬
ËùÒÔ£¨an+cn£©-£¨an-1+cn-1£©=q£¬
ÓÖan-an-1=2qn-2£¬
ËùÒÔcn-cn-1=q-2qn-2£¬
ËùÒÔcn-1-cn-2=q-2qn-3£¬¡£¬c3-c2=q-2q£¬c2-c1=q-2£¬
ËùÒÔcn=nq-2(qn-2+qn-3+¡+q+1£©
=nq-
£®¡£¨9·Ö£©
ËùÒÔc1=q£¾0£¬c2=2£¨q-1£©£¾0£¬c3=q-2£¼0£¬
c4=-2£¨q2-q+1£©=-2£¨q-
£©2-
£¼0£¬¡
²ÂÏ룺µ±n¡Ý3ʱ£¬cn£¼0£®
ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùµ±n=3ʱ£¬c3£¼0ÏÔÈ»³ÉÁ¢£¬
¢Ú¼ÙÉèµ±n=k£¨k¡Ý3£©Ê±£¬ck£¼0£¬
ÄÇôµ±n=k+1ʱ£¬cn+1=cn+q-2qn-1£¼q-2qk-1=q£¨1-2qk-2£©£¬
ÒòΪ1£¼q£¼2£¬k¡Ý3£¬
ËùÒÔ1-2qk-2£¼0£®
ËùÒÔcn+1£¼0£¬
ËùÒÔµ±n=k+1ʱ£¬cn+1£¼0³ÉÁ¢£®
ÓÉ¢Ù¡¢¢ÚËùÊö£¬µ±n¡Ý3ʱ£¬ºãÓÐcn£¼0£®¡£¨14·Ö£©
ËùÒÔb2=4£¬b3=8£¬
ËùÒÔa1=1£¬a2=3£¬a3=7£¬a4=15£®£¨Ð´³öÂú×ãÌõ¼þµÄÒ»×é¼´¿É£©
¡£¨2·Ö£©
£¨¢ò£©£¨¢¡£©ÒòΪb1=2£¬
ËùÒÔa2-a1=2£¬a3-a2=2q£¬a4-a3=2q2£¬¡£¬an-an-1=2qn-2£¬n¡Ý2£®
ËùÒÔan-a1=2(1+q+q2+¡+qn-2)£®
¢ÙÈôq=1£¬ËùÒÔan-an-1=2£¬
ËùÒÔÊýÁÐ{an}ÊǵȲîÊýÁУ®¡£¨3·Ö£©
¢ÚÈôq¡Ù1£¬ËùÒÔan=
2(1-qn-1) |
1-q |
ËùÒÔan+1-an=
2(1-qn) |
1-q |
2(1-qn-1) |
1-q |
2qn-1-2qn |
1-q |
ÒòΪq¡Ù1£¬ËùÒÔ2qn-1²»Êdz£Êý£®
ËùÒÔÊýÁÐ{an}²»ÊǵȲîÊýÁУ®¡£¨5·Ö£©
£¨¢¢£©ÒòΪÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬Ê×Ïîb1=2£¬¹«±ÈΪq£¬
ËùÒÔb2=2q£¬b3=2q2£®ËùÒÔa2=a1+2£¬a3=a1+2+2q£®
ÒòΪÊýÁÐ{an}ÊǵȱÈÊýÁУ¬
ËùÒÔa22=a1•a3£¬
¼´£¨a1+2£©2=a1•£¨a1+2+2q£©£¬
ËùÒÔq=
a1+2 |
a1 |
ËùÒÔµ±q=
a1+2 |
a1 |
£¨¢ó£©ÒòΪ{an+cn}Êǹ«²îΪqµÄµÈ²îÊýÁУ¬
ËùÒÔ£¨an+cn£©-£¨an-1+cn-1£©=q£¬
ÓÖan-an-1=2qn-2£¬
ËùÒÔcn-cn-1=q-2qn-2£¬
ËùÒÔcn-1-cn-2=q-2qn-3£¬¡£¬c3-c2=q-2q£¬c2-c1=q-2£¬
ËùÒÔcn=nq-2(qn-2+qn-3+¡+q+1£©
=nq-
2(1-qn-1) |
1-q |
ËùÒÔc1=q£¾0£¬c2=2£¨q-1£©£¾0£¬c3=q-2£¼0£¬
c4=-2£¨q2-q+1£©=-2£¨q-
1 |
2 |
3 |
2 |
²ÂÏ룺µ±n¡Ý3ʱ£¬cn£¼0£®
ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùµ±n=3ʱ£¬c3£¼0ÏÔÈ»³ÉÁ¢£¬
¢Ú¼ÙÉèµ±n=k£¨k¡Ý3£©Ê±£¬ck£¼0£¬
ÄÇôµ±n=k+1ʱ£¬cn+1=cn+q-2qn-1£¼q-2qk-1=q£¨1-2qk-2£©£¬
ÒòΪ1£¼q£¼2£¬k¡Ý3£¬
ËùÒÔ1-2qk-2£¼0£®
ËùÒÔcn+1£¼0£¬
ËùÒÔµ±n=k+1ʱ£¬cn+1£¼0³ÉÁ¢£®
ÓÉ¢Ù¡¢¢ÚËùÊö£¬µ±n¡Ý3ʱ£¬ºãÓÐcn£¼0£®¡£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁк͵ȱÈÊýÁеÄÖ¤Ã÷£¬×ÛºÏÐÔÇ¿£¬ÄѶȴ󣬶ÔÊýѧ˼άµÄÒªÇó½Ï¸ß£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÊýѧ¹éÄÉ·¨µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿