题目内容

【题目】已知函数f(x)在定义域[2﹣a,3]上是偶函数,在[0,3]上单调递增,并且f(﹣m2 )>f(﹣m2+2m﹣2),则m的取值范围是(
A.
B.
C.
D.

【答案】D
【解析】解:因为函数f(x)在定义域[2﹣a,3]上是偶函数,所以2﹣a+3=0,所以a=5.
所以 ,即f(﹣m2﹣1)>f(﹣m2+2m﹣2),
所以函数f(x)在[﹣3,0]上单调递减,而﹣m2﹣1<0,﹣m2+2m﹣2=﹣(m﹣1)2﹣1<0,
所以由f(﹣m2﹣1)>f(﹣m2+2m﹣2)得,

解得
故选:D
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网