题目内容
【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高二学生平均每天体育锻炼的时间进行调查,调查结果如下表,将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
(1)请根据上述表格中的统计数据填写下面2×2列联表;并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出5人,进行体育锻炼体会交流,
(ⅰ)求这5人中,男生、女生各有多少人?
(ⅱ)从参加体会交流的5人中,随机选出3人作重点发言,求选出的这3人中至少有1名女生的概率.
参考公式:,其中.
临界值表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)表格见解析,能;(2)(ⅰ)男生3人,女生2人;(ⅱ)
【解析】
(1)由锻炼达标人数为50及总人数为200,可完成表格,代入公式,算得结果与5.024作比较,即可得到本题答案;(2)先按比例算出5人中男女的人数,然后用列举法解决古典概型问题.
解:(1)列出列联表,如下:
锻炼不达标 | 锻炼达标 | 合计 | |
男 | 60 | 30 | 90 |
女 | 90 | 20 | 110 |
合计 | 150 | 50 | 200 |
则
所以可以在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关;
(2)(ⅰ)在“锻炼达标”的50名学生中,男、女生人数比为3:2,
所以用分层抽样的方法抽出5人,男生有人,女生有人;
(ⅱ)参加体会交流的5人中,3名男生记为a,b,c,2名女生记为A,B,从中随机选出3人作重点发言,一共有,,,,,,,,,10种不同的选法,其中选出的这3人中至少有1名女生的不同选法有,,,,,,,,9种,
故所求的概率为
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为,求的分布列和数学期望.
参考公式:,其中.
临界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |