题目内容
【题目】已知三条直线l1:2x-y+a=0(a>0),直线l2:4x-2y-1=0和直线l3:x+y-1=0,且l1和l2的距离是.
(1)求a的值.
(2)能否找到一点P,使得P点同时满足下列三个条件:①P是第一象限的点;②P点到l1的距离是P点到l2的距离的;③P点到l1的距离与P点到l3的距离之比是?若能,求出P点坐标;若不能,请说明理由.
【答案】(1)a=3;(2)P().
【解析】
(1) 根据两条直线是平行关系,利用两条平行线的距离公式即可求得a的值。
(2) 根据点到直线的距离公式,讨论当P点满足②与③两种条件下求得参数的取值,并注意最后结果的取舍。
(1)l2的方程即为,
∴l1和l2的距离d=,∴.∵a>0,∴a=3.
(2)设点P(x0,y0),若P点满足条件②,则P点在与l1和l2平行的直线
l′:2x-y+c=0上,且,即c=或c=.
∴2x0-y0+或2x0-y0+.
若点P满足条件③,由点到直线的距离公式,
∴x0-2y0+4=0或3x0+2=0.
由P在第一象限,∴3x0+2=0不合题意.
联立方程2x0-y0+和x0-2y0+4=0,解得x0=-3,y0=,应舍去.
由2x0-y0+与x0-2y0+4=0联立,解得x0=,y0=.
所以P()即为同时满足三个条件的点.
练习册系列答案
相关题目
【题目】某工厂生产甲、乙两种产品.已知生产一吨甲产品、一吨乙产品所需要的煤、电以及产值如表所示;又知道国家每天分配给该厂的煤和电力有限制,每天供煤至多56吨,供电至多45千瓦.问该厂如何安排生产,才能使该厂日产值最大?最大的产值是多少?
用煤(吨) | 用电(千瓦) | 产值(万元) | |
生产一吨 甲种产品 | 7 | 2 | 8 |
生产一吨 乙种产品 | 3 | 5 | 11 |