题目内容
【题目】如图:在直三棱柱中,,,是棱上一点,是的延长线与的延长线的交点,且平面.
(1)求证:;
(2)求二面角的正弦值;
(3)若点在线段上,且直线与平面所成的角的正弦值为,求线段的长.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)连结,设,连结,由平面,利用线面平行的性质,可得,由是的中点,证得为的中点;
(2)建立空间直角坐标系,用向量法求二面角的正弦值;
(3)在第二问的基础上,设,根据直线与平面所成的角的正弦值,求出,求出线段的长
(1)连结,设,连结
∵平面,平面,平面平面,∴.
∵为正方形的中心,∴.∴.
∵,∴.
(2)以为坐标原点,为轴,为轴,为轴,如图建立空间直角坐标系.
则,,,,,
设平面的法向量为,又
则,令,得,
设平面的法向量为,又
则则,令,得,
∴.
∴.
∴二面角的正弦值为.
(3)设,其中
∴
∵,∴
∴,.
【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主
创业,该专营店统计了近五年来创收利润数(单位:万元)与时间(单位:年)的数据,列表如下:
1 | 2 | 3 | 4 | 5 | |
2.4 | 2.7 | 4.1 | 6.4 | 7.9 |
(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合):
(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.
方案一:每满500元可减50元;
方案二:每满500元可抽奖一次,每次中奖的概率都为,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.
①某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客获得100元现金奖励的概率.
②某位顾客购买了1500元的产品,作为专营店老板,是希望该顾客直接选择返回150元现金,还是选择参加三次抽奖?说明理由
附:相关系数公式
参考数据:.
【题目】2019年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善生存环境质量.某部门在某小区年龄处于区间内的人中随机抽取人进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到图各年龄段人数的频率分布直方图和表中统计数据.
(1)求的值;
(2)根据频率分布直方图,估计这人年龄的平均值(同一组数据用该组区间的中点值代替,结果保留整数);
(3)从年龄段在的“环保族”中采用分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在区间中的概率.
组数 | 分组 | “环保族”人数 | 占本组频率 |
第一组 | 45 | 0.75 | |
第二组 | 25 | ||
第三组 | 0.5 | ||
第四组 | 3 | 0.2 | |
第五组 | 3 | 0.1 |