题目内容
【题目】如图,在四棱锥中,底面,,,,点为棱的中点,
(1)证明:;
(2)若点为棱上一点,且,求二面角的余弦值.
【答案】(1)见解析;(2).
【解析】
分析:(Ⅰ)由题意可得.两两垂直,建立空间直角坐标系,根据可证得.(Ⅱ)根据点在棱上可设,再由,得,由此可得,从而可得.然后可求得平面的法向量为,又平面的一个法向量,可得,然后结合图形可得所求.
详解:(Ⅰ)证明:底面, 平面,面,
∴,,
又,
∴.两两垂直.
以为原点,为轴,为轴,为轴,建立空间直角坐标系.
则由题意得,
∴,
∴,
∴.
(Ⅱ)由(Ⅰ)可得,.
由点在棱上,
设,,
,
,
解得,
∴.
设平面的法向量为,则
由,得,
令,得.
由题意取平面的一个法向量.
∴,
由图形知二面角是锐角,
所以二面角的余弦值为.
【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其
上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求的估计值;
【题目】新能源汽车的春天来了!2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2018年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2018年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:
月份 | 2017.12 | 2018.01 | 2018.02 | 2018.03 | 2018.04 |
月份编号t | 1 | 2 | 3 | 4 | 5 |
销量(万辆) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)经分析,可用线性回归模型拟合当地该品牌新能源汽车实际销量(万辆)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测2018年5月份当地该品牌新能源汽车的销量;
(2)2018年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:
补贴金额预期值区间(万元) | ||||||
20 | 60 | 60 | 30 | 20 | 10 |
将频率视为概率,现用随机抽样方法从该地区拟购买新能源汽车的所有消费者中随机抽取3人,记被抽取3人中对补贴金额的心理预期值不低于3万元的人数为,求的分布列及数学期望.
参考公式及数据:①回归方程,其中,,②,.
【题目】某销售公司拟招聘一名产品推销员,有如下两种工资方案:
方案一:每月底薪2000元,每销售一件产品提成15元;
方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.
(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;
(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:
月销售产品件数 | 300 | 400 | 500 | 600 | 700 |
次数 | 2 | 4 | 9 | 5 | 4 |
把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.