题目内容
7.已知$A=\{x|5-x≥\sqrt{2(x-1)}\}$,B={x|x2-ax≤x-a},当“x∈A”是“x∈B”的充分不必要条件,则a的取值范围是(3,+∞).分析 先解出A={x|1≤x≤3},将B表示成B={x|(x-1)(x-a)≤0},而由“x∈A”是“x∈B”的充分不必要条件便可得到A?B.为解集合B,需讨论a和1的关系:a≤1时,容易看出不能满足A?B,而a>1时,求出B={x|1≤x≤a},从而a应满足a>3.
解答 解:由5-x$≥\sqrt{2(x-1)}$得:
$\left\{\begin{array}{l}{5-x≥0}\\{x-1≥0}\\{(5-x)^{2}≥2(x-1)}\end{array}\right.$;
解该不等式组得1≤x≤3;
∴A={x|1≤x≤3},B={x|(x-1)(x-a)≤0};
∵“x∈A”是“x∈B”的充分不必要条件;
∴A?B;
①若a≤1,显然不满足A?B;
②若a>1,则B={x|1≤x≤a};
∵A?B;
∴a>3;
∴a的取值范围是(3,+∞).
故答案为:(3,+∞).
点评 考查解无理不等式的方法:去根号,描述法表示集合,一元二次不等式的解法,以及真子集的概念,充分不必要条件的概念.
练习册系列答案
相关题目
17.已知双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{{b}^{2}}$=1经过点(4,3),则双曲线C的离心率为( )
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{7}}{2}$ | D. | $\frac{\sqrt{13}}{2}$ |
2.在空间,下列命题中不正确的是( )
A. | 如果两个平面有一个公共点,那么它们还有其他公共点 | |
B. | 若已知四个点不共面,则其中任意三个点也不共面 | |
C. | 若点A既在平面α内又在平面β内,则点A在平面α与平面β的交线上 | |
D. | 若两点A、B既在直线l上又在平面α内,则l在平面α内 |
19.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数 $z=x+\frac{m}{2}y(m>0)$的最大值为2,则$y=sin(mx+\frac{π}{3})$的图象向右平移$\frac{π}{6}$后的表达式为( )
A. | $y=sin(2x+\frac{π}{6})$ | B. | $y=sin(x+\frac{π}{6})$ | C. | y=sin2x | D. | $y=sin(2x+\frac{2π}{3})$ |
16.函数y=cos(sinx)的图象大致是( )
A. | B. | C. | D. |