题目内容

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.
分析:(Ⅰ)设T(x,y),点N(x1,y1),则N1(x1,0),又
OM
=
1
5
ON
=(
1
5
x1
1
5
y1)
M1(0,
1
5
y1)
M1N
=(
1
5
x1,0)
N1N
=(0,y1)
,于是
OT
=
M1M
+
N1N
=(
1
5
x1y1)
,由此能求出曲线C的方程.
(Ⅱ)设A(x,y),由
OP
=3
OA
及P在第一象限知P(3m,3n),m>0,n>0,由A∈C1,P∈C2,知5m2+n2=36,5m2-n2=4,解得A(2,4),P(6,12),设Q(x,y),则5x2-y2=36.由S=-26tan∠PAQ,得
1
2
|
AP
| •|
AQ
| •sin∠PAQ=-26tan∠PAQ
,所以(4,8)•(x-2,y-4)=-52x+2y+3=0.联立方程组,解得Q(3,-3).由P(6,12),Q(3,-3)得l的方程.
解答:解:(Ⅰ)设T(x,y),点N(x1,y1),则N1(x1,0),
OM
=
1
5
ON
=(
1
5
x1
1
5
y1)

M1(0,
1
5
y1)
M1M
=(
1
5
x1,0)
N1N
=(0,y1)

于是
OT
=
M1M
+
N1N
=(
1
5
x1y1)

即(x,y)=(
1
5
x1 ,y1)

x1=
5
x
y1=y
,代入|
ON
| =6
,得5x2+y2=36.
∴曲线C的方程是5x2+y2=36.
(Ⅱ)设A(x,y),由
OP
=3
OA
及P在第一象限知P(3m,3n),m>0,n>0,
∵A∈C1,P∈C2
∴5m2+n2=36,5m2-n2=4,
解得m=2,n=4,即A(2,4),P(6,12),
设Q(x,y),则5x2-y2=36①,
由S=-26tan∠PAQ,得
1
2
|
AP
| •|
AQ
| •sin∠PAQ=-26tan∠PAQ

AP
AQ
=-52

即(4,8)•(x-2,y-4)=-52x+2y+3=0②
联立①②,解得
x=-
51
19
y=-
3
19
,或
x=3
y=-3

∵Q在双曲线的右支,∴Q(3,-3).
由P(6,12),Q(3,-3)得l的方程为
y+3
12+3
=
x-3
6-3

即5x-y-18=0.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网