题目内容
(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
|=6,
=
•
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1,
=
+
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
=3
,S△PAQ=-26tan∠PAQ求直线L的方程.
设平面直角坐标中,O为原点,N为动点,|
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP |
OA |
分析:(Ⅰ)设T(x,y),点N(x1,y1),则N1(x1,0),又
=
=(
x1,
y1),M1(0,
y1),
=(
x1,0),
=(0,y1),于是
=
+
=(
x1,y1),由此能求出曲线C的方程.
(Ⅱ)设A(x,y),由
=3
及P在第一象限知P(3m,3n),m>0,n>0,由A∈C1,P∈C2,知5m2+n2=36,5m2-n2=4,解得A(2,4),P(6,12),设Q(x,y),则5x2-y2=36.由S=-26tan∠PAQ,得
|
| •|
| •sin∠PAQ=-26tan∠PAQ,所以(4,8)•(x-2,y-4)=-52x+2y+3=0.联立方程组,解得Q(3,-3).由P(6,12),Q(3,-3)得l的方程.
OM |
1 | ||
|
ON |
1 | ||
|
1 | ||
|
1 | ||
|
M1N |
1 | ||
|
N1N |
OT |
M1M |
N1N |
1 | ||
|
(Ⅱ)设A(x,y),由
OP |
OA |
1 |
2 |
AP |
AQ |
解答:解:(Ⅰ)设T(x,y),点N(x1,y1),则N1(x1,0),
又
=
=(
x1,
y1),
∴M1(0,
y1),
=(
x1,0),
=(0,y1),
于是
=
+
=(
x1,y1),
即(x,y)=(
x1 ,y1),
∴
,代入|
| =6,得5x2+y2=36.
∴曲线C的方程是5x2+y2=36.
(Ⅱ)设A(x,y),由
=3
及P在第一象限知P(3m,3n),m>0,n>0,
∵A∈C1,P∈C2,
∴5m2+n2=36,5m2-n2=4,
解得m=2,n=4,即A(2,4),P(6,12),
设Q(x,y),则5x2-y2=36①,
由S=-26tan∠PAQ,得
|
| •|
| •sin∠PAQ=-26tan∠PAQ,
∴
•
=-52,
即(4,8)•(x-2,y-4)=-52x+2y+3=0②
联立①②,解得
,或
,
∵Q在双曲线的右支,∴Q(3,-3).
由P(6,12),Q(3,-3)得l的方程为
=
,
即5x-y-18=0.
又
OM |
1 | ||
|
ON |
1 | ||
|
1 | ||
|
∴M1(0,
1 | ||
|
M1M |
1 | ||
|
N1N |
于是
OT |
M1M |
N1N |
1 | ||
|
即(x,y)=(
1 | ||
|
∴
|
ON |
∴曲线C的方程是5x2+y2=36.
(Ⅱ)设A(x,y),由
OP |
OA |
∵A∈C1,P∈C2,
∴5m2+n2=36,5m2-n2=4,
解得m=2,n=4,即A(2,4),P(6,12),
设Q(x,y),则5x2-y2=36①,
由S=-26tan∠PAQ,得
1 |
2 |
AP |
AQ |
∴
AP |
AQ |
即(4,8)•(x-2,y-4)=-52x+2y+3=0②
联立①②,解得
|
|
∵Q在双曲线的右支,∴Q(3,-3).
由P(6,12),Q(3,-3)得l的方程为
y+3 |
12+3 |
x-3 |
6-3 |
即5x-y-18=0.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关题目