题目内容
已知函数
.
(1)若
,求
的单调区间及
的最小值;
(2)若
,求
的单调区间;
(3)试比较
与
的大小
,并证明你的结论.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619618716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619650488.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619665337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619712399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
(3)试比较
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240156197431034.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619759846.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619790776.png)
(1)0
(2)当
时,
的递增区间是
,递减区间是
;
当
,
的递增区间是
,递减区间是![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620024445.png)
(3)根据题意,由于由(1)可知,当
时,有
即
,那么利用放缩法来证明。
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619806370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619837527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619852503.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619868438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619899497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620024445.png)
(3)根据题意,由于由(1)可知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620055504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620071564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620086563.png)
试题分析:(1) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620118359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620133624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620149710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619899497.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620211436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620133624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620227714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620024445.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619665337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619899497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620024445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620352792.png)
(2) ①若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619806370.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620383394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620398661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620414826.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619837527.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620461478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620476664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620227714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619852503.png)
②若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619868438.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620383394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620398661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620586741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620601660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620617723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619899497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620679434.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620461478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620476664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620227714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619852503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620773369.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619899497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620024445.png)
综上: 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619806370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619837527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619852503.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619868438.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619681447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619899497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620024445.png)
(3)由(1)可知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620055504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620071564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015620086563.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240156197431034.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015621022860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015621038959.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240156210541165.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240156210691120.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015621100739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619759846.png)
故:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240156197431034.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015621147207.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015619759846.png)
点评:主要是考查了导数在研究函数单调性,以及函数最值方面的运用,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目