题目内容
【题目】如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )
A. AP⊥PB,AP⊥PC
B. AP⊥PB,BC⊥PB
C. 平面BPC⊥平面APC,BC⊥PC
D. AP⊥平面PBC
【答案】B
【解析】A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC平面PBC,所以AP⊥BC,故A正确;
C中,因为平面BCP⊥平面PAC,BC⊥PC,所以BC⊥平面APC,AP平面APC,所以AP⊥BC,故C正确;
D中,由A知D正确;B中条件不能判断出AP⊥BC,
故选B.
点睛: 垂直、平行关系证明中应用转化与化归思想的常见类型.
(1)证明线面、面面平行,需转化为证明线线平行.
(2)证明线面垂直,需转化为证明线线垂直.
(3)证明线线垂直,需转化为证明线面垂直.
练习册系列答案
相关题目