题目内容

【题目】如图, 直径, 所在的平面, 是圆周上不同于 的动点.

(1)证明:平面 平面
(2)若 ,且当二面角 的正切值为 时,求直线 与平面 所成的角的正弦值.

【答案】
(1)证明:∵ 在圆 上, 为圆 的直径,

又∵ 所在的平面,∴
,∴ 平面
由于 平面 ,∴平面 平面
(2)解:如图,过 ,连接

平面 ,∴
平面 ,则 即为所求的角,
平面
为二面角 的平面角.
,∴
中,
中,
即直线 与平面 所成的角的正弦值为
【解析】(1)根据题意首先利用圆的性质可得 B C ⊥ AC,利用线面垂直可得 B C ⊥ P A再根据线面垂直的判定定理即可得出B C ⊥ 平面 P A C 然后即可得出面面垂直。(2)首先根据二面角的定义可得二面角的平面角 ∠ P C A,再根据题意作出辅助线进而得出直线AB与平面PBC所成的角在结合解三角形的知识即可得出结论。
【考点精析】通过灵活运用直线与平面垂直的判定和直线与平面垂直的性质,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;垂直于同一个平面的两条直线平行即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网