题目内容
【题目】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
【答案】
(1)解: 第3组的人数为0.3×100=30,第4组的人数为0.2×100=20,第5组的人数为0.1×100=10.
因为第3,4,5组共有60名志愿者,
所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,
每组抽取的人数分别为:第3组: ×6=3; 第4组: ×6=2; 第5组: ×6=1.
所以应从第3,4,5组中分别抽取3人,2人,1人;
(2)解: 记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,.则从5名志愿者中抽取2名志愿者有:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),
(A2,A3),(A2,B1),(A2,B2),
(A3,B1),(A3,B2),(B1,B2)共有10种.
其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有:
(A1,B1),(A1,B2),(A2,B1),(A2,B2),
(A3,B1),(A3,B2),(B1,B2),共有7种
所以第4组至少有一名志愿者被抽中的概率为 .
【解析】(1)先分别求出这3组的人数,再利用分层抽样的方法即可得出答案;(2)从5名志愿者中抽取2名志愿者有10种情况,其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中有7种情况,再利用古典概型的概率计算公式即可得出.
【考点精析】利用频率分布直方图对题目进行判断即可得到答案,需要熟知频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.