题目内容
【题目】已知函数f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在点(1,g(1))处的切线方程为2y-1=0.
(1)求g(x)的解析式;
(2)设函数G(x)=若方程G(x)=a2有且仅有四个解,求实数a的取值范围.
【答案】(1)g(x)=x2-lnx(2)
【解析】(1)g′(x)=2bx+ 由条件,得即∴b=,c=-1,
∴g(x)=x2-lnx.
(2)G(x)=
当x>0时,G(x)=g(x)=x2-lnx,g′(x)=x-=.
令g′(x)=0,得x=1,且当x∈(0,1),g′(x)<0,x∈(1,+∞),g′(x)>0,
∴g(x)在(0,+∞)上有极小值,即最小值为g(1)=.
当x≤0时,G(x)=f(x)=ax3-3ax,f′(x)=3ax2-3a=3a(x+1)(x-1).
令f′(x)=0,得x=-1.①若a=0,方程G(x)=a2不可能有四个解;
②若a<0时,当x∈(-∞,-1),f′(x)<0,当x∈(-1,0),f′(x)>0,∴f(x)在(-∞,0]上有极小值,即最小值为f(-1)=2a.又f(0)=0,∴G(x)的图象如图①所示,从图象可以看出方程G(x)=a2不可能有四个解;
,①) ,②)
③若a>0时,当x∈(-∞,-1),f′(x)>0,当x∈(-1,0),f′(x)<0,∴f(x)在(-∞,0]上有极大值,即最大值为f(-1)=2a.又f(0)=0,∴G(x)的图象如图②所示.从图象可以看出方程G(x)=a2若有四个解,必须<a2<2a,∴<a<2.综上所述,满足条件的实数a的取值范围是
【题目】从某网站的程序员中随机抽取名统计其年龄数据如下表:
年龄 | 23 | 26 | 27 | 30 | 32 | 34 | 38 |
人数 | 1 | 3 | 3 | 5 | 4 | 3 | 1 |
(1)求这名程序员的平均年龄及年龄的众数、中位数;
(2)若这名程序员中年龄不超过岁,且学历是研究生及其以上有人,岁以上且学历是本科及其以下有人,完成下面的列联表,并判断是否有%的把握认为该网站程序员的学历与年龄有关.
年龄≤30 | 年龄>30 | |
学历研究生及其以上 | ||
学历本科及其以下 |
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.