题目内容
18.过点(1,2)且与圆x2+y2=1相切的直线方程为3x-4y+5=0或x=1.分析 设出切线方程,利用圆心到直线的距离等于半径求出方程,当直线的斜率不存在时验证即可.
解答 解:设切线方程为y-2=k(x-1),即kx-y+2-k=0.
由于直线与圆相切,故圆心到直线的距离等于半径,即$\frac{|2-k|}{\sqrt{{k}^{2}+1}}$=1,解得k=$\frac{3}{4}$,
其方程为3x-4y+5=0.
又,当斜率不存在时,切线方程为x=1.
故答案为:3x-4y+5=0或x=1.
点评 本题考查圆的切线方程的求法,注意斜率是否存在是解题的关键,也是易错点.
练习册系列答案
相关题目
9.已知函数f(x)=ax(a>0且a≠1)和函数g(x)=sin$\frac{π}{2}$x,若f(x)的反函数为h(x),且h(x)与g(x)两图象只有3个交点,则a的取值范围是( )
A. | $(\frac{1}{5},1)∪(1,\frac{9}{2})$ | B. | $(0,\frac{1}{7})∪(1,\frac{9}{2})$ | C. | $(\frac{1}{7},\frac{1}{3})∪(5,9)$ | D. | $(\frac{1}{7},\frac{1}{2})∪(3,9)$ |
6.设函数f(x)=ex-e(e为自然常数),则该函数曲线在x=1处的切线方程是( )
A. | ex-y-e=0 | B. | ex-y+1=0 | C. | ex-y=0 | D. | ex-y+1-e2=0 |
3.直线l1:ax+2y+3=0与l2:x-(a-1)y+a2-1=0,则“a=2”是“直线l1与l2垂直”的( )
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分又不必要条件 |
8.为了了解“中国好声音”在大众中的熟知度,随机对15~65岁的人群抽样了n人有关回答问题,统计结果如下图表.
(Ⅰ)分别求出a,b,x,y的值;
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.
组号 | 分组 | 回答 正确 的人数 | 回答正确 的人数占本 组的频率 |
第1组 | [15,25) | a | 0.5 |
第2组 | [25,35) | 18 | x |
第3组 | [35,45) | b | 0.9 |
第4组 | [45,55) | 9 | 0.36 |
第5组 | [55,65] | 3 | y |
(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.