ÌâÄ¿ÄÚÈÝ
2£®£¨1£©º¯Êýy=sin£¨2x-$\frac{¦Ð}{6}$£©Í¼ÏóµÄÌõ¶Ô³ÆÖáÊÇ·½³Ìx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£¬¶Ô³ÆÖÐÐÄ×ø±ê£¨$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£¬×î´óÖµxʱ¼¯ºÏ£º{x|x=k¦Ð+$\frac{¦Ð}{3}$£¬k¡ÊZ}£®£¨2£©º¯Êýy=sin£¨2x-$\frac{¦Ð}{6}$£©-1ͼÏóµÄÌõ¶Ô³ÆÖáÊÇ·½³Ìx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£¬¶Ô³ÆÖÐÐÄ×ø±ê£¨$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£¬×î´óÖµxʱ¼¯ºÏ£º{x|x=k¦Ð+$\frac{¦Ð}{3}$£¬k¡ÊZ}£®
£¨3£©º¯Êýy=tan£¨2x-$\frac{¦Ð}{6}$£©+3ͼÏó¶Ô³ÆÖÐÐÄ×ø±ê£¨ $\frac{k¦Ð}{4}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£¬µ¥µ÷µÝÔöÇø¼äΪ[k¦Ð-$\frac{¦Ð}{6}$£¬$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$]£¬k¡ÊZ£®
£¨4£©º¯Êýy=|tan£¨2x-$\frac{¦Ð}{6}$£©|+3ͼÏóµÄÌõ¶Ô³ÆÖáÊÇ·½³Ìx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£¬ÖÜÆÚÊǦУ¬µ¥µ÷µÝ¼õÇø¼äΪ[k¦Ð-$\frac{¦Ð}{6}$£¬$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$]£¬k¡ÊZ£®
·ÖÎö ÓÉÌõ¼þÀûÓÃÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¡¢×î´óÖµ¡¢ÖÜÆÚÐÔ£¬ÒÔ¼°ËüÃǵÄͼÏóµÄ¶Ô³ÆÐÔ£¬µÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¶ÔÓÚº¯Êýy=sin£¨2x-$\frac{¦Ð}{6}$£©£¬Áî2x-$\frac{¦Ð}{6}$=k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬ÇóµÃx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬¿ÉµÃͼÏóµÄÌõ¶Ô³ÆÖáÊÇ·½³ÌΪx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£®
Áî2x-$\frac{¦Ð}{6}$=k¦Ð£¬k¡ÊZ£¬ÇóµÃx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬¿ÉµÃËüµÄ¶Ô³ÆÖÐÐÄΪ£¨$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£»
Áî2x-$\frac{¦Ð}{6}$=2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬ÇóµÃx=k¦Ð+$\frac{¦Ð}{3}$£¬¿ÉµÃº¯ÊýÈ¡µÃ×î´óֵʱ£¬xµÄ¼¯ºÏΪ{x|x=k¦Ð+$\frac{¦Ð}{3}$£¬k¡ÊZ}£¬
¹Ê´ð°¸Îª£ºx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£»£¨$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£»{x|x=k¦Ð+$\frac{¦Ð}{3}$£¬k¡ÊZ}£®
£¨2£©¶ÔÓÚº¯Êýy=sin£¨2x-$\frac{¦Ð}{6}$£©-1£¬Áî2x-$\frac{¦Ð}{6}$=k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬ÇóµÃx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬¿ÉµÃ£¬Í¼ÏóµÄÌõ¶Ô³ÆÖáÊÇ·½³Ìx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£»
Áî2x-$\frac{¦Ð}{6}$=k¦Ð£¬k¡ÊZ£¬ÇóµÃx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬¿ÉµÃËüµÄ¶Ô³ÆÖÐÐÄΪ£¨$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£»
Áî2x-$\frac{¦Ð}{6}$=2k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬ÇóµÃx=k¦Ð+$\frac{¦Ð}{3}$£¬¿ÉµÃº¯ÊýÈ¡µÃ×î´óֵʱ£¬xµÄ¼¯ºÏΪ{x|x=k¦Ð+$\frac{¦Ð}{3}$£¬k¡ÊZ}£®
¹Ê´ð°¸Îª£ºx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£»£¨$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£»{x|x=k¦Ð+$\frac{¦Ð}{3}$£¬k¡ÊZ}£®
£¨3£©¶ÔÓÚº¯Êýy=tan£¨2x-$\frac{¦Ð}{6}$£©+3£¬Áî2x-$\frac{¦Ð}{6}$=$\frac{k¦Ð}{2}$£¬ÇóµÃx=$\frac{k¦Ð}{4}$+$\frac{¦Ð}{12}$£¬k¡ÊZ£»¿ÉµÃ ͼÏó¶Ô³ÆÖÐÐÄ×ø±êΪ£¨ $\frac{k¦Ð}{4}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£®
Áî k¦Ð-$\frac{¦Ð}{2}$£¼2x-$\frac{¦Ð}{6}$£¼k¦Ð+$\frac{¦Ð}{2}$£¬ÇóµÃ k¦Ð-$\frac{¦Ð}{6}$£¼x£¼$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬¿ÉµÃËüµÄÔöÇø¼äΪ[k¦Ð-$\frac{¦Ð}{6}$£¬$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$]£¬k¡ÊZ£»
¹Ê´ð°¸Îª£º£¨ $\frac{k¦Ð}{4}$+$\frac{¦Ð}{12}$£¬0£©£¬k¡ÊZ£»[k¦Ð-$\frac{¦Ð}{6}$£¬$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$]£¬k¡ÊZ£®
£¨4£©¶ÔÓÚº¯Êýy=|tan£¨2x-$\frac{¦Ð}{6}$£©|+3£¬Áî2x-$\frac{¦Ð}{6}$=k¦Ð+$\frac{¦Ð}{2}$£¬k¡ÊZ£¬ÇóµÃx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬¿ÉµÃͼÏóµÄÌõ¶Ô³ÆÖáÊÇ·½³Ìx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£»
ËüµÄÖÜÆÚΪ$\frac{¦Ð}{2}$£»
Áî k¦Ð-$\frac{¦Ð}{2}$£¼2x-$\frac{¦Ð}{6}$£¼k¦Ð£¬ÇóµÃ k¦Ð-$\frac{¦Ð}{6}$£¼x£¼$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$£¬¿ÉµÃËüµÄ¼õÇø¼äΪ[k¦Ð-$\frac{¦Ð}{6}$£¬$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$]£¬k¡ÊZ£»
¹Ê´ð°¸Îª£ºx=$\frac{k¦Ð}{2}$+$\frac{¦Ð}{3}$£¬k¡ÊZ£»¦Ð£»[k¦Ð-$\frac{¦Ð}{6}$£¬$\frac{k¦Ð}{2}$+$\frac{¦Ð}{12}$]£¬k¡ÊZ£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¡¢×î´óÖµ¡¢ÖÜÆÚÐÔ£¬ÒÔ¼°ËüÃǵÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÊôÓÚ»ù´¡Ì⣮
A£® | Èô$\overrightarrow{a}$•$\overrightarrow{b}$£¼0£¬Ôòx£¾0£¬y£¾0 | B£® | Èô$\overrightarrow{a}$•$\overrightarrow{b}$£¼0£¬Ôòx£¼0£¬y£¼0 | ||
C£® | Èô$\overrightarrow{a}$•$\overrightarrow{b}$£¾0£¬Ôòx£¼0£¬y£¼0 | D£® | Èô$\overrightarrow{a}$•$\overrightarrow{b}$£¾0£¬Ôòx£¾0£¬y£¾0 |
A£® | £¨0£¬1£© | B£® | £¨0£¬2£© | C£® | £¨1£¬2£© | D£® | £¨1£¬+¡Þ£© |
A£® | 1 | B£® | $\sqrt{3}$ | C£® | 2 | D£® | 2$\sqrt{3}$ |