题目内容
【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)请按字母F、G、H标记在正方体相应地顶点处(不需要说明理由);
(2)判断平面BEG与平面ACH的位置关系.并说明你的结论;
(3)证明:直线DF⊥平面BEG.
【答案】(1)见解析;(2)平面BEG∥平面ACH;(3)证明见解析
【解析】试题分析:(1)折叠成正方体即可得出;(2)根据条件可证四边形BCEH为平行四边形,因此BE∥CH,由线面平行判定定理即可得证;(3)根据DH⊥平面EFGH可得DH⊥EG,又EG⊥FH,可证EG⊥平面BFHD,所以DF⊥EG,同理可证同理DF⊥BG,所以命题得证.
试题解析:
(1)点F、G、H的位置如图所示.
(2)平面BEC∥平面ACH.证明如下:
因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,
又FG∥EH,FG=EH,所以BC∥EH,BC=EH,
于是四边形BCEH为平行四边形,
所以BE∥CH,
又CH平面ACH,BE平面ACH,
所以BE∥平面ACH,
同理,BG∥平面ACH,
又BE∩BG=B,
所以平面BEG∥平面ACH.
(3)连接FH交EG于点O,连接BD.
因为ABCD-EFGH为正方体,所以DH⊥平面EFGH,
因为EG平面EFGH,所以DH⊥EG,
又EG⊥FH,EG∩FH=O,
所以EG⊥平面BFHD,
又DF平面BFHD,所以DF⊥EG,
同理DF⊥BG,
又EG∩BG=G,
所以DF⊥平面BEG.
练习册系列答案
相关题目