题目内容
【题目】在各项为正的数列{an}中,数列的前n项和Sn满足Sn= (an+ ),
(1)求a1 , a2 , a3;
(2)由(1)猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.
【答案】
(1)解:易求得
(2)解:猜想
证明:①当n=1时, ,命题成立
②假设n=k时, 成立,
则n=k+1时, = = ,
所以, ,∴ .
即n=k+1时,命题成立.
由①②知,n∈N*时, .
【解析】(1)由题设条件,分别令n=1,2,3,能够求出a1,a2,a3.(2)由(1)猜想数列{an}的通项公式: ,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
【考点精析】解答此题的关键在于理解归纳推理的相关知识,掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.
练习册系列答案
相关题目
【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:
价格x | 5 | 5.5 | 6.5 | 7 |
销售量y | 12 | 10 | 6 | 4 |
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y= 中, , = ﹣ . =146.5.