题目内容

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各随机抽取了100件产品作为样本来检测一项质量指标值,若产品的该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图是乙套设备的样本的频率分布直方图.

表甲套设备的样本的频数分布表

质量指标值

频数

2

10

36

38

12

2

(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?

(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.

甲套设备

乙套设备

合计

合格品

不合格品

合计

附表及公式:,其中

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)8600件;(2)列联表见解析,不能在犯错误的概率不超过0.01的前提下可以认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.

【解析】

1)计算出不合格品率,和不合格品件数,由此求得合格品件数.2)根据题目所给表格和图像数据,填写好联表,计算出的值,由此判断出“不能在犯错误的概率不超过0.01的前提下可以认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.”

解:(1)由题图1知,乙套设备生产的不合格品的概率约为

∴乙套设备生产的10000件产品中不合格品约为(件),

故合格品的件数为(件).

(2)由题中的表1和图1得到2×2列联表如下:

甲套设备

乙套设备

合计

合格品

96

86

182

不合格品

4

14

18

合计

100

100

200

将2×2列联表中的数据代入公式计算得的观测值

因为6.105<6.635,

所以不能在犯错误的概率不超过0.01的前提下可以认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网