题目内容
【题目】正三棱柱(底面是正三角形,侧棱垂直底面)的各条棱长均相等,为的中点.、分别是、上的动点(含端点),且满足.当运动时,下列结论中正确的是______ (填上所有正确命题的序号).
①平面平面;
②三棱锥的体积为定值;
③可能为直角三角形;
④平面与平面所成的锐二面角范围为.
【答案】①②④
【解析】
由,得到线段一定过正方形的中心,由平面,可得平面平面;
由的面积不变,到平面的距离不变,可得三棱锥的体积为定值;
利用反证法思想说明不可能为直角三角形;
平面与平面平行时所成角为0,当与重合,与重合,平面与平面所成的锐二面角最大.
如图:
当、分别是、上的动点(含端点),且满足,则线段一定过正方形的中心,而平面,平面,可得平面平面,故①正确;
当、分别是、上的动点(含端点),过点作边上的高的长等于的长,所以的面积不变,由于平面,故点到平面的距离等于点到平面的距离,则点到平面的距离为定值,故三棱锥的体积为定值;所以②正确;
由可得: ,若为直角三角形,则一定是以为直角的直角三角形,但的最大值为,而此时,的长都大于,故不可能为直角三角形,所以③不正确;
当、分别是、的中点,平面与平面平行,所成角为0;
当与重合,与重合,平面与平面所成锐二面角最大;
延长角于,连接,则平面平面,由于为的中点,,所以,且,故在中,为中点,为中点,
在中,为中点,为中点,故,由于平面,所以平面,则,, 所以平面与平面所成锐二面角最大为,故④正确;
故答案为①②④
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各随机抽取了100件产品作为样本来检测一项质量指标值,若产品的该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲套设备的样本的频数分布表,图是乙套设备的样本的频率分布直方图.
表甲套设备的样本的频数分布表
质量指标值 | ||||||
频数 | 2 | 10 | 36 | 38 | 12 | 2 |
(1)将频率视为概率.若乙套设备生产了10000件产品,则其中的合格品约有多少件?
(2)填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下,认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关.
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附表及公式:,其中;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(2)把评分不低于70分的用户称为“评分良好用户”,能否有的把握认为“评分良好用户”与性别有关?
参考附表:
参考公式,其中