题目内容
18.过点(1,-1)的直线l与直线:-5x+y=0平行,则l在纵轴上的截距是( )A. | -4 | B. | 4 | C. | -6 | D. | 6 |
分析 由平行关系可得直线的斜率,可得直线的方程,令x=0解得y值即为截距.
解答 解:由题意可得直线-5x+y=0的斜率为5,
由平行关系可得直线l的斜率也为5,
∴所求直线方程为y+1=5(x-1),
令x=0可得y=-6,
∴l在纵轴上的截距为-6
故选:C.
点评 本题考查直线的一般式方程和平行关系,属基础题.
练习册系列答案
相关题目
13.△ABC的顶点A(3,4),B(6,0),且∠A的内角平分线AT所在的直线方程为7x-y-17=0,则边AC所在的直线方程是( )
A. | x-2y+5=0 | B. | 2x-3y+6=0 | C. | 3x-4y+7=0 | D. | 4x-5y+8=0 |
1.函数f(x)=x2-ln2x的单调递减区间是( )
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,+∞) | C. | (-∞,-$\frac{\sqrt{2}}{2}$],(0,$\frac{\sqrt{2}}{2}$) | D. | [-$\frac{\sqrt{2}}{2}$,0),(0,$\frac{\sqrt{2}}{2}$) |