题目内容
19.已知sinα是方程5x2-7x-6=0的根,求 $\frac{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)}{sin(-α-\frac{3}{2}π)•sin(\frac{3}{2}π-α)•tan(α-2π)}$ 的值.分析 求出已知方程的解确定出sinα的值,利用同角三角函数间的基本关系求出cosα的值,进而确定出tanα的值,原式利用诱导公式及同角三角函数间的基本关系化简,把tanα的值代入计算即可求出值.
解答 解:∵sinα是方程5x2-7x-6=0的根,
∴sinα=-$\frac{3}{5}$或sinα=2(舍去),
∴cosα=±$\sqrt{1-si{n}^{2}α}$=±$\frac{4}{5}$,即tanα=±$\frac{3}{4}$,
原式=$\frac{sinα•(-sinα)}{cosα•(-cosα)(-tanα)}$=-tanα=±$\frac{3}{4}$.
点评 此题考查了同角三角函数基本关系的运用,以及运用诱导公式化简求值,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
18.过点(1,-1)的直线l与直线:-5x+y=0平行,则l在纵轴上的截距是( )
A. | -4 | B. | 4 | C. | -6 | D. | 6 |
10.若$\frac{sinθ-cosθ}{sinθ+cosθ}$=2,则sinθcosθ的值是( )
A. | $\frac{3}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | -$\frac{3}{10}$ |
14.x>y是lgx>lgy成立的( )
A. | 充分非必要条件 | B. | 必要非充分条件 | ||
C. | 充要条件 | D. | 既非充分又非必要条件 |
8.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-1,x≥1}\\{-{x}^{2}-ax,x<1}\end{array}\right.$,f[f(1)]=1,则不等式x2+x-a<0的解集为( )
A. | (-2,1) | B. | (-1,$\frac{3}{2}$) | C. | (-$\frac{3}{2}$,1) | D. | (1,2) |
9.已知一次考试共有60名同学参加,考生的成绩X~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内( )
A. | (90,110] | B. | (95,125] | C. | (100,120] | D. | (105,115] |