题目内容
【题目】如图,在矩形ABCD中,AB=8,BC=4,E为DC边的中点,沿AE将△ADE折起,在折起过程中,有几个正确( )
①ED⊥平面ACD ②CD⊥平面BED ③BD⊥平面ACD ④AD⊥平面BED.
A.1个
B.2个
C.3个
D.4个
【答案】A
【解析】解:∵在矩形ABCD中,AB=8,BC=4,E为DC边的中点,
∴在折起过程中,D点在平面BCE上的投影如右图.
∵DE与AC所成角不能为直角,
∴DE不会垂直于平面ACD,故①错误;
只有D点投影位于O2位置时,即平面AED与平面AEB重合时,
才有BE⊥CD,此时CD不垂直于平面AEBC,
故CD与平面BED不垂直,故②错误;
BD与AC所成角不能成直线,
∴BD不能垂直于平面ACD,故③错误;
∵AD⊥ED,并且在折起过程中,有AD⊥BC,
∴存在一个位置使AD⊥BE,
∴在折起过程中AD⊥平面BED,故④正确.
故选:A.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
【题目】某校从参加高三期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及样本频率分布表如下:
分组 | 频数 | 频率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15 | ② |
[80,90) | ① | 0.24 |
[90,100] | 4 | 0.08 |
合计 | ③ | ④ |
(1)请把给出的样本频率分布表中的空格都填上;
(2)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[40,50)中的某一位同学,已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数(份)与收入(元)之间有如下的对应数据:
外卖份数(份) | 2 | 4 | 5 | 6 | 8 |
收入(元) | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:①参考公式:线性回归方程系数公式, ;
②参考数据: , , .