题目内容
已知函数
(
)
(1)当a=2时,求
在区间[e,e2]上的最大值和最小值;
(2)如果函数
、
、
在公共定义域D上,满足
<
<
,那么就称
为
、
的“伴随函数”.已知函数
,
,若在区间(1,+∞)上,函数
是
、
的“伴随函数”,求a的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008385727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008401431.png)
(1)当a=2时,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
(2)如果函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008432442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008448473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008463488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008448473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008432442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008463488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008432442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008448473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008463488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240500085731247.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008573862.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008448473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008463488.png)
(1)
的最大值为f(e2)=4e4+lne2=2+4e4,最小值为f(e)=2e2+lne=1+2e2;
(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008651500.png)
试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008682681.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008697693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008729734.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008744560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008760724.png)
(1)当a=2时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008775719.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008791931.png)
当x∈[e,e2]时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008807570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
(2)若在区间(1,+∞)上,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008448473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008463488.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008448473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008417447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008463488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240500089631498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240500089781485.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240500089782193.png)
①若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008994482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009009571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009025766.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009041496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009056532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009072593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009087664.png)
当x2<x1=1,即a≥1时,同理可知在区间(1,+∞)上,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009103619.png)
②若a≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009119338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009134780.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009150504.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009165588.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240500091971691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009212622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050009228466.png)
即a的取值范围是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050008651500.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目