题目内容
3.已知Sn是等差数列{an}的前n项和,S3=6,an-2+an=16,若Sn=50,则n的值为10.分析 通过S3=3a2=6可得a2=2,利用an-2+an=16可得公差d=$\frac{6}{n-3}$,利用Sn=50计算即得结论.
解答 解:∵S3=3a2=6,∴a2=2,
又an-2+an=16,
化为:a2+d(n-4)+a2+d(n-2)=16,
∴4+d(2n-6)=16,
即d(n-3)=6,
∴d=$\frac{6}{n-3}$,
而Sn=na1+$\frac{n(n-1)}{2}$d=n(2-$\frac{6}{n-3}$)+$\frac{3n(n-1)}{n-3}$=50,
化简得:(n-3)(n-10)=0,
解得n=10或n=3(增根,舍去),
故答案为:10.
点评 本题考查等差数列的相关知识,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
13.已知f1(x)=sinx,f2(x)=f1′(x),f3(x)=f2′(x),f4(x)=f3′(x),…,fn(x)=fn-1′(x),则f2015(x)等于( )
A. | cosx | B. | -cosx | C. | sinx | D. | -sinx |
14.已知函数f(x)=Acos(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的解析式为( )
A. | y=2cos($\frac{x}{2}$-$\frac{π}{4}$)+4 | B. | y=2cos($\frac{x}{2}$+$\frac{π}{4}$)+4 | C. | y=4cos($\frac{x}{2}$-$\frac{π}{4}$)+2 | D. | y=4cos($\frac{x}{2}$+$\frac{π}{4}$)+2 |
12.在△ABC中,已知M是BC中点,设$\overrightarrow{CB}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,则$\overrightarrow{AM}$=( )
A. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$ | B. | $\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$ | C. | $\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$ | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ |