题目内容

15.已知在等差数列{an}中,$\frac{{{a_{11}}+{a_{12}}+…+{a_{20}}}}{10}=\frac{{{a_1}+{a_2}+…{a_{30}}}}{30}$,则在等比数列{bn}中,类似的结论为$\root{10}{{b}_{11}•{b}_{12}•…•{b}_{20}}=\root{30}{{b}_{1}•{b}_{2}•{b}_{3}•…•{b}_{30}}$.

分析 在等差数列中,等差数列的性质m+n=p+q,则am+an=ap+aq,那么对应的在等比数列中对应的性质是若m+n=p+q,则bmbn=bpbq

解答 解:等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,
等差数列中除法对应等比数列中的开方,
故此我们可以类比得到结论:$\root{10}{{{b_{11}}•{b_{12}}•…•{b_{20}}}}=\;\root{30}{{{b_1}•{b_2}•{b_3}•…•{b_{30}}}}$.
故答案为:$\root{10}{{b}_{11}•{b}_{12}•…•{b}_{20}}=\root{30}{{b}_{1}•{b}_{2}•{b}_{3}•…•{b}_{30}}$.

点评 本题考查类比推理,掌握类比推理的规则及类比对象的特征是解本题的关键,本题中由等差结论类比等比结论,其运算关系由加类比乘,解题的难点是找出两个对象特征的对应,作出合乎情理的类比.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网