题目内容
如图,三棱柱中,侧棱垂直底面,底面三角形是正三角形,是中点,则下列叙述正确的是( )
A.与是异面直线 |
B.平面 |
C.,为异面直线,且 |
D.平面 |
C
解析试题分析:C.三棱柱中,底面是互相平行的,又E在边BC上,所以,无交点,故是异面直线,又底面三角形是正三角形,是中点,所以AE⊥BC,BC//B1C1 AE⊥B1C1,显然C正确;
A.是中点,显然与是共面的直线;此选项错误;
B.若平面,则AC⊥AB,而∠CAB=60°,显然是矛盾的,此选项错误;
考点:线面位置关系的判断.
练习册系列答案
相关题目
设是不同的直线,是不同的平面,下列命题中正确的是 ( )
A.若,则 |
B.若,则 |
C.若,则⊥ |
D.若,则 |
三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是( )
A.与是异面直线 |
B.平面 |
C.、为异面直线,且 |
D.平面 |
已知是三条不同的直线,是两个不同的平面,下列命题为真命题的是( )
A.若,,,,则 |
B.若,∥,,则 |
C.若∥,,则∥ |
D.若,,,则∥ |
如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( )
A.EH∥FG |
B.四边形EFGH是矩形 |
C.Ω是棱柱 |
D.Ω是棱台 |