题目内容

小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.

(1)根据图中的数据信息,求出众数和中位数(精确到整数分钟);
(2)小明的父亲上班离家的时间在上午之间,而送报人每天在时刻前后半小时内把报纸送达(每个时间点送达的可能性相等),求小明的父亲在上班离家前能收到报纸(称为事件)的概率.

(1);(2)

解析试题分析:(1)在频率分步直方图中,最高矩形的中点横坐标代表数据的众数;各个矩形的面积和为1,中位数是面积等分为的轴线和横轴的交点;平均数是各矩形的面积乘以相应矩形中点横坐标的累加值;(2)基本事件总数有无限多个,故可以考虑几何概型.可以看成平面中的点,试验的全部结果构成平面区域,而事件A发生的前提是,利用面积的比表示事件A发生的概率
试题解析:(1)                                                  2分
由频率分布直方图可知,             3分


 
解得分即               6分
(2)设报纸送达时间为                       7分
则小明父亲上班前能取到报纸等价于
,                                                   10分
如图可知,所求概率为                                   13分
考点:1、频率分布直方图;2、众数和中位数;3、几何概型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网