题目内容
【题目】为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康,2019年6月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭2019年1至6月的人均月纯收入,作出散点如下:
根据盯关性分析,发现其家庭人均月纯收入与时间代码之间具有较强的线性相关关系(记2019年1月、2月……分别为,,…,依此类推),由此估计该家庭2020年能实现小康生活.但2020年1月突如其来的新冠肺炎疫情影响了奔小康的进展,该家庭2020年第一季度每月的人均月纯收入只有2019年12月的预估值的.
(1)求关于的线性回归方程;
(2)求该家庭2020年3月份的人均月纯收入;
(3)如果以该家庭3月份人均月纯收入为基数,以后每月增长率为,问该家庭2020年底能否实现小康生活?
参考数据:,,
参考公式:,.
【答案】(1);(2)500元;(3)能.
【解析】
(1)根据题意求得,再由提供的数据得到,,,代入公式,求得,进而求得,写出回归方程.
(2)用(1)的回归方程,令,求得2019年12月该家庭人均月纯收入预估值,然后再根据2020年第一季度每月的人均月纯收入只有2019年12月的预估值的求解.
(3)由每月的增长率为,设从3月开始到12月的纯收入之和为,,利用等比数列求和公式求解,然后再加上1,2月份的收入与8000比较即可.
(1)依题意得:,,
,,
所以,
,
所以关于的线性回归方程为.
(2)令,得2019年12月该家庭人均月纯收入预估值为元
故,2020年3月份该家庭的人均月纯收入为元.
(3)每月的增长率为,设从3月开始到12月的纯收入之和为,
则,
,
,
故到年底能如期实现小康.
【题目】“海水稻”就是耐盐碱水稻,是一种介于野生稻和栽培稻之间的普遍生长在海边滩涂地区,具有耐盐碱的水稻,它比其它普通的水稻均有更强的生存竞争能力,具有抗涝,抗病虫害,抗倒伏等特点,还具有预防和治疗多种疾病的功效,防癌效果尤为显著.海水稻的灌溉是将海水稀释后进行灌溉.某试验基地为了研究海水浓度(‰)对亩产量(吨)的影响,通过在试验田的种植实验,测得了某种海水稻的亩产量与海水浓度的数据如表.绘制散点图发现,可用线性回归模型拟合亩产量与海水浓度之间的相关关系,用最小二乘法计算得与之间的线性回归方程为.
海水浓度(‰) | 3 | 4 | 5 | 6 | 7 |
亩产量(吨) | 0.62 | 0.58 | 0.49 | 0.4 | 0.31 |
残差 |
(1)请你估计:当浇灌海水浓度为8‰时,该品种的亩产量.
(2)①完成上述残差表:
②统计学中,常用相关指数来刻画回归效果,越大,模型拟合效果越好,并用它来说明预报变量与解释变量的相关性.你能否利用以上表格中的数据,利用统计学的相关知识,说明浇灌海水浓度对亩产量的贡献率?(计算中数据精确到)
(附:残差公式,相关指数)