题目内容
【题目】函数.
(1)当时,讨论函数的单调性;
(2)当时,时,恒成立,求正整数的最大值.
【答案】(1)见解析
(2)
【解析】
(1)对求导,再因式分解,讨论每个因式的正负,再判断的正负,进而判断的单调性;(2)代入,将不等式中的和分离在不等号两边,然后讨论不等号含有一边的函数的单调性,进而判断最值,再计算的取值范围,由是正整数的条件可求出的最大值.
解:(1)函数的定义域为,
①当时,因为,故有.
此时函数在区间单调递减.
②当,有,方程的两根分别是:
函数在上单调递减;
当函数在上单调递增;
当函数在上单调递减.
③当时,易知在上单调递增,在上单调递减.
综上所述,当时,在上单调递减;
当时,在上单调递减,
在上单调递增;
当时,在上单调递增,在单调递减.
(2)当
设
当时,有,
设
在上单调递增,
又在上的函数图像是一条不间断的曲线,
且,
存在唯一的,使得,即.
当;
当,
在上单调递减,在上单调递增,
在上单调递减,
,
时,不等式对任意恒成立,
正整数的最大值是3.
练习册系列答案
相关题目