题目内容
【题目】如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知,,Q到海岸线OM,ON的距离分别为3 km,km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q.
(1)求水上旅游线AB的长;
(2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h时的半径为(a为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.
【答案】(1)(2)
【解析】
试题(1)由条件建立直角坐标系较为方便表示:,直线的方程为.由Q到海岸线ON的距离为km,得,解得,再由两直线交点得,利用两点间距离公式得(2)由题意是一个不等式恒成立问题:设小时时,游轮在线段上的点处,而不等式恒成立问题往往利用变量分离将其转化为对应函数最值问题:
试题解析:(1)以点为坐标原点,直线为轴,建立直角坐标系如图所示.
则由题设得:,直线的方程为.
由,及得,∴.∴直线的方程为,即, 由得即,∴,即水上旅游线的长为.
(2)设试验产生的强水波圆,由题意可得P(3,9),生成小时时,游轮在线段上的点处,则,∴.强水波不会波及游轮的航行即,当时 ,当.,,当且仅当时等号成立,所以,在时恒成立,亦即强水波不会波及游轮的航行.
练习册系列答案
相关题目