题目内容
【题目】己知{an}是等差数列,其前n项和Sn=n2﹣2n+b﹣1,{bn}是等比数列,其前n项和Tn,则数列{ bn +an}的前5项和为( )
A.37B.-27C.77D.46
【答案】C
【解析】
由等差数列的求和公式、等比数列的求和公式,结合数列的递推式,可得b=1,a=2,求得数列{an},{bn}的通项公式,再由数列的分组求和,结合等差数列和等比数列的求和公式,可得所求和.
{an}是等差数列,其前n项和,
由等差数列的求和公式可得b﹣1=0,即b=1,
即Sn=n2﹣2n,
a1=S1=﹣1,an=Sn﹣Sn﹣1=n2﹣2n﹣(n﹣1)2+2(n﹣1)=2n﹣3,
则an=2n﹣3,n∈N*;
{bn}是等比数列,其前n项和,
则b13,bn=Tn﹣Tn﹣13n3n﹣1=﹣23n﹣1,
则3=﹣2,即a=2,
则bn +an=n+2n,
数列{ bn +an}的前5项和为(1+2+…+5)+(2+4+…+32)
5×677.
故选:C.
练习册系列答案
相关题目