题目内容
【题目】已知,,若点A为函数上的任意一点,点B为函数上的任意一点.
(1)求A,B两点之间距离的最小值;
(2)若A,B为函数与函数公切线的两个切点,求证:这样的点B有且仅有两个,且满足条件的两个点B的横坐标互为倒数.
【答案】(1).(2)证明见解析
【解析】
(1)由于与互为反函数,即函数图象关于y=x对称,且在点(0,1)处的切线为y=x+1和在点(1,0)的切线为y=x-1,所以A,B两点之间的距离的最小值即为(0,1)与(1,0)之间的距离;
(2)在A处的切线为,在B 处的切线为,由于它们是,公切线 ,所以,联立消得,,最后令,证,有且仅有两个解,且两个解互为倒数即可.
(1)解:由,则在点(0,1)处的切线为y=x+1,
又,则在点(1,0)的切线为y=x-1,
由于与互为反函数,即函数图象关于y=x对称如图,
故而A,B两点之间的距离的最小值即为(0,1)与(1,0)之间的距离,
所以A,B两点之间的距离的最小值为.
(2)设A ,B
则在A处的切线为,即
在B 处的切线为,即,
所以,则,
要证这样的点B有且仅有两个,需证上式有且有两个解,
令,下证有且仅有两个解,
由,因为单调递增,单调递减,所以单调递增,
又,,故存在唯一的,使得,
故而,当时,,单调递减;
当时,,单调递增;
又,,
所以在上有唯一的根;
记,由,则,
又,
故是在上有唯一的根,
所以有且仅有两个解,
综上所述,这样的点B有且仅有两个,且满足条件的两个点B的横坐标互为倒数.
【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如下图所示:
(1)将去年的消费金额超过 3200 元的消费者称为“健身达人”,现从所有“健身达人”中随机抽取 2 人,求至少有 1 位消费者,其去年的消费金额超过 4000 元的概率;
(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:
会员等级 | 消费金额 |
普通会员 | 2000 |
银卡会员 | 2700 |
金卡会员 | 3200 |
预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员. 消费者在申请办理会员时,需-次性缴清相应等级的消费金额.该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:
方案 1:按分层抽样从普通会员, 银卡会员, 金卡会员中总共抽取 25 位“幸运之星”给予奖励: 普通会员中的“幸运之星”每人奖励 500 元; 银卡会员中的“幸运之星”每人奖励 600 元; 金卡会员中的“幸运之星”每人奖励 800 元.
方案 2:每位会员均可参加摸奖游戏,游戏规则如下:从-个装有 3 个白球、 2 个红球(球只有颜色不同)的箱子中, 有放回地摸三次球,每次只能摸-个球.若摸到红球的总数消费金额/元为 2,则可获得 200 元奖励金; 若摸到红球的总数为 3,则可获得 300 元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加 1 次摸奖游戏;每位银卡会员均可参加 2 次摸奖游戏;每位金卡会员均可参加 3 次摸奖游戏(每次摸奖的结果相互独立) .
以方案 2 的奖励金的数学期望为依据,请你预测哪-种方案投资较少?并说明理由.