题目内容
已知圆
的方程为
,直线
的方程为
,点
在直线
上,过
点作圆
的切线
,切点为
.
(1)若
,试求点
的坐标;
(2)求证:经过
三点的圆必过定点,并求出所有定点的坐标;
(3)求弦
长的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403363389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403395691.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403395250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403410539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403426272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403395250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403426272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403363389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403551492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403566405.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403582632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403426272.png)
(2)求证:经过
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403909558.png)
(3)求弦
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403925396.png)
(1)
或
;(2)见解析;(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403941491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403956665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403972431.png)
(1)根据
,求得
;(2)求出圆的方程
,此式是关于
的恒等式,列条件;(3)表示出弦长,求最值。
解:(1)设
,由题可知
,所以
,解之得:
故所求点
的坐标为
或
. ........4分
(2)设
,
的中点
,因为
是圆
的切线
所以经过
三点的圆是以
为圆心,以
为半径的圆,
故其方程为:
........6分
化简得:
,此式是关于
的恒等式,
故
解得
或
所以经过
三点的圆必过定点
或
. ........10分
(3)设
,且
与
交于点
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232124049701007.png)
当
时,
最小值为
...16分
(几何方法酌情给分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403582632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403956665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232124041121025.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404128337.png)
解:(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404143620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404159547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404175814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404190640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403426272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403941491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403956665.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404143620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404518461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404533766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404533367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404549399.png)
所以经过
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403909558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404580333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404611493.png)
故其方程为:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232124046271190.png)
化简得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232124041121025.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404128337.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232124046741048.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404721686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404736889.png)
所以经过
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403909558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404783477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404799706.png)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404814669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404830456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403925396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212404923323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232124049701007.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232124051261496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212405142525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403925396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212403972431.png)
(几何方法酌情给分)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目