题目内容

在△ABC中,a,b,c分别为三个内角A,B,C的对边,且acosB=3,bsinA=4.
(1)求边长a;
(2)若△ABC的面积S=10,求△ABC的周长.
考点:余弦定理
专题:计算题,解三角形
分析:(1)由图及已知作CD垂直于AB,在直角三角形BDC中求BC的长.
(2)由面积公式解出边长c,再由余弦定理解出边长b,求三边的和即周长.
解答: 解:(1)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3
∴在Rt△BCD中,a=BC=
BD2+CD2
=5
(2)由面积公式得S=
1
2
×AB×CD=
1
2
×AB×4=10得AB=5,
又acosB=3,得cosB=
3
5

由余弦定理得:b=
a2+c2-2accosB
=
25+25-2×25×
3
5
=2
5

△ABC的周长l=5+5+2
5
=10+2
5
点评:本题主要考查了射影定理及余弦定理,考查运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网