题目内容
【题目】下列方程中,没有实数根的是( )
A.2x+3=0
B.﹣1=0
C.
D.+x+1=0
【答案】D
【解析】解:A、2x+3=0,解得:x=﹣ ,
∴A中方程有一个实数根;
B、在x2﹣1=0中,
△=02﹣4×1×(﹣1)=4>0,
∴B中方程有两个不相等的实数根;
C、 =1,即x+1=2,
解得:x=1,
经检验x=1是分式方程 =1的解,
∴C中方程有一个实数根;
D、在x2+x+1=0中,
△=12﹣4×1×1=﹣3<0,
∴D中方程没有实数根.
故选D.
【考点精析】关于本题考查的解一元一次方程的步骤和求根公式,需要了解先去分母再括号,移项变号要记牢.同类各项去合并,系数化“1”还没好.求得未知须检验,回代值等才算了;根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根才能得出正确答案.
练习册系列答案
相关题目
【题目】按照国家环保部发布的新修订的《环境空气质量标准》,规定:PM2.5的年平均浓度不得超过35微克/立方米,国家环保部门在2016年10月1日到2017年1月30日这120天对全国的PM2.5平均浓度的监测数据统计如下:
组别 | PM2.5浓度(微克/立方米) | 频数(天) |
第一组 | 32 | |
第二组 | 64 | |
第三组 | 16 | |
第四组 | 115以上 | 8 |
(1)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?
(2)在(1)中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.