题目内容
【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.
(1)求该选手在复赛阶段被淘汰的概率;
(2)设该选手在竞赛中回答问题的个数为,求的分布列与均值.
【答案】(1);(2)分布列见解析,.
【解析】
(1)记“该选手通过初赛”为事件,“该选手通过复赛”为事件,“该选手通过决赛”为事件,则.那么该选手在复赛阶段被淘汰的概率,由此能求出结果.
(2)可能取值为1,2,3.分别求出相应的概率,由此能求出的分布列和.
解:(1)记“该选手通过初赛”为事件A,“该选手通过复赛”为事件B,“该选手通过决赛”为事件C,则.
那么该选手在复赛阶段被淘汰的概率
.
(2)可能取值为1,2,3.
,
.
故的分布列为
1 | 2 | 3 | |
P |
的均值为.
【题目】近来国内一些互联网公司为了赢得更大的利润、提升员工的奋斗姿态,要求员工实行工作制,即工作日早点上班,晚上点下班,中午和傍晚最多休息小时,总计工作小时以上,并且一周工作天的工作制度,工作期间还不能请假,也没有任何补贴和加班费.消息一出,社交媒体一片哗然,有的人认为这是违反《劳动法》的一种对员工的压榨行为,有的人认为只有付出超越别人的努力和时间,才能够实现想要的成功,这是提升员工价值的一种有效方式.对此,国内某大型企业集团管理者认为应当在公司内部实行工作制,但应该给予一定的加班补贴(单位:百元),对于每月的补贴数额集团人力资源管理部门随机抽取了集团内部的名员工进行了补贴数额(单位:百元)期望值的网上问卷调查,并把所得数据列成如下所示的频数分布表:
组别(单位:百元) | |||||
频数(人数) |
(Ⅰ)求所得样本的中位数(精确到百元);
(Ⅱ)根据样本数据,可近似地认为员工的加班补贴X服从正态分布,若该集团共有员工,试估计有多少员工期待加班补贴在元以上;
(Ⅲ)已知样本数据中期望补贴数额在范围内的名员工中有名男性,名女性,现选其中名员工进行消费调查,记选出的女职员人数为,求的分布列和数学期望.
附:若,则,,.