ÌâÄ¿ÄÚÈÝ
4£®Ä³µ¥Î»¾Ù°ì³é½±»î¶¯£¬ÒÑÖª³é½±ºÐÖÐ×°ÓС°Ì츮¿¨¡±ºÍ¡°ÐÜ迨¡±¹²10ÕÅ£®ÆäÖУ®Ì츮¿¨¡±±È¡°ÐÜ迨¡±ÊýÁ¿¶à£®³é½±¹æÔòÊÇ£º²ÎÓëÕßËæ»ú´ÓºÐÖÐͬʱ³éÈ¡Á½ÕÅ¿¨Æ¬¾ÍÍê³ÉÒ»´Î³é½±£¬³éºó·Å»Ø£®Èô³éµ½Á½ÕÅ¡°ÐÜ迨£¬¼´¿É»ñ½±£¬·ñÔò²»»ñ½±£®ÒÑÖªÒ»´Î³é½±ÖУ¬³éµ½¡°Ì츮¿¨¡±ºÍ¡°ÐÜ迨¡±¸÷Ò»ÕŵĸÅÂÊÊÇ$\frac{7}{15}$£®£¨¢ñ£©ÇóijÈ˳齱һ´Î¾ÍÖн±µÄ¸ÅÂÊ£»
£¨¢ò£©ÏÖÓÐ3¸öÈ˸÷³é½±Ò»´Î£¬ÓÃX±íʾ»ñ½±µÄÈËÊý£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
·ÖÎö ¸ù¾ÝµÃ³öÌ츮¿¨¡±ÓÐ7ÕÅ£¬
£¨I£©P£¨A£©=$\frac{{C}_{3}^{2}}{{C}_{10}^{2}}$ÔËÓÃÅÅÁÐ×éºÏ֪ʶÇó½â£®
£¨II£©¸ù¾ÝÌâÒâX¡«B£¨3£¬$\frac{1}{15}$£©XµÄ·Ö²¼ÁÐΪP£¨X=i£©=${c}_{3}^{i}$£¨$\frac{1}{15}$£©i£¨$\frac{14}{15}$£©3-i£¬i=0£¬1£¬2£¬3£¬Çó½âµÃ³ö·Ö²¼ÁУ¬ÊýѧÆÚÍû£®
½â´ð ½â£ºÉè10ÕÅ¿¨Æ¬ÖУ¬¡°Ì츮¿¨¡±ÓÐnÕÅ£¬Ôò¡°ÐÜ迨¡±ÓÐ10-nÕÅ£¬n£¾10-n£¬
¼´n£¾5£¬n¡ÊN
ÓÉÒÑÖªµÃ³ö$\frac{{{C}_{n}^{1}c}_{10-n}^{1}}{{C}_{10}^{2}}$=$\frac{7}{15}$£¬
½âµÃn=7
£¨I£©¼Ç¡°Ä³È˲ÎÓëÒ»´Î³é½±»î¶¯»ñ½±¡±ÎªÊ¼þA£¬
¡àP£¨A£©=$\frac{{C}_{3}^{2}}{{C}_{10}^{2}}$=$\frac{1}{15}$£¬
¡àijÈ˲ÎÓëÒ»´Î³é½±»î¶¯»ñ½±µÄ¸ÅÂÊΪ$\frac{1}{15}$
£¨II£©¸ù¾ÝÌâÒâX¡«B£¨3£¬$\frac{1}{15}$£©
¡àXµÄ·Ö²¼ÁÐΪP£¨X=i£©=${c}_{3}^{i}$£¨$\frac{1}{15}$£©i£¨$\frac{14}{15}$£©3-i£¬i=0£¬1£¬2£¬3
»ò
X | 0 | 1 | 2 | 3 |
P | $\frac{2744}{3375}$ | $\frac{196}{1125}$ | $\frac{14}{1125}$ | $\frac{1}{3375}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬½â¾öÀëÉ¢ÐÍËæ»ú±äÁ¿·Ö²¼ÁÐÎÊÌâʱ£¬Ö÷ÒªÒÀ¾Ý¸ÅÂʵÄÓйظÅÄîºÍÔËË㣬ͬʱ»¹Òª×¢ÒâÌâÄ¿ÖÐÀëÉ¢ÐÍËæ»ú±äÁ¿·þ´Óʲô·Ö²¼£¬Èô·þ´ÓÌØÊâµÄ·Ö²¼ÔòÔËËãÒª¼òµ¥µÄ¶à£®
A£® | 36 | B£® | 45 | C£® | 55 | D£® | 120 |
x | 0 | 1 | 4 | 5 | 6 | 8 |
y | 1 | 3 | 5 | 6 | 7 | 8 |
A£® | 0.95 | B£® | 1.00 | C£® | 1.10 | D£® | 1.15 |