题目内容
【题目】设椭圆,右顶点是,离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆交于两点(不同于点),若,求证:直线过定点,并求出定点坐标.
【答案】(1); (2).
【解析】
(1)由椭圆右顶点的坐标为A(2,0),离心率,可得a,c的值,由此可得椭圆C的方程;(2)当直线斜率不存在时,设,易得,当直线斜率存在时,直线,与椭圆方程联立,得,由可得,从而得证.
(1)右顶点是,离心率为,
所以,∴,则,
∴椭圆的标准方程为.
(2)当直线斜率不存在时,设,
与椭圆方程联立得:,,
设直线与轴交于点,,即,
∴或 (舍),
∴直线过定点;
当直线斜率存在时,设直线斜率为,,则直线,与椭圆方程联立,得,
,,,
,
,则,
即,
∴,
∴或,
∴直线或,
∴直线过定点或舍去;
综上知直线过定点.
【题目】高一学年结束后,要对某班的50名学生进行文理分班,为了解数学对学生选择文理科是否有影响,有人对该班的分科情况做了如下的数据统计:
理科人数 | 文科人数 | 总计 | |
数学成绩好的人数 | 25 | 30 | |
数学成绩差的人数 | 10 | ||
合计 | 15 |
(Ⅰ)根据数据关系,完成列联表;
(Ⅱ)通过计算判断能否在犯错误的概率不超过的前提下认为数学对学生选择文理科有影响.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取名同学(男女),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题 | 代数题 | 总计 | |
男同学 | |||
女同学 | |||
总计 |
(1)能否据此判断有的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在分钟,乙每次解答一道几何题所用的时间在分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何的名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列及数学期望.